Fuzzy Supervised Multi-Period Time Series Forecasting
نویسندگان
چکیده
منابع مشابه
A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering
In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but al...
متن کاملA Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering
In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but al...
متن کاملTime series forecasting using fuzzy techniques
The aim of this contribution is to show the opportunities of applying of fuzzy time series models to predict multiple heterogeneous time series, given at International Time Series Forecasting Competition [http://irafm.osu.cz/cif/main.php]. The dataset of this competition includes 91 time series of different length, time frequencies and behaviour. In this paper the framework (algorithm) of multi...
متن کاملTime Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization
Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...
متن کاملFourth-order Fuzzy Time Series Based on Multi-Period Adaptation Models for Kuala Lumpur Composite Index Forecasting
the length o ti time series with adaption period was proposed by Chen et al as one of the mechanisms in improving forecasting accuracy. First, second, third and fourth order fuzzy times series based on multi-period adaptation models were successfully tested with stock exchange indexes in Taiwan and Hong Kong. However feasibility of the fourth order model especially the effect of multi-period ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cybernetics and Information Technologies
سال: 2019
ISSN: 1314-4081
DOI: 10.2478/cait-2019-0016